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Derivatives of velocity and temperature in the wind over the ocean were found 
to be quite variable. Probability distribution functions of squared derivatives 
were consistent with lognormality predictions by Kolmogoroff, Obukhoff and 
Yaglom. Kurtosis values for velocity derivatives ranged from 13 to 26 and from 
26 to 43 for temperature derivatives. Universal inertial subrange constants were 
evaluated from dissipation spectra and were found to be 40 to 300% larger 
than most values reported previously. Evidence for local anisotropy of the tem- 
perature field is provided by non-zero values of the measured derivative skew- 
ness. 

1. Introduction 

local viscous dissipation e, 
An important property of turbulent flow is the increasing variability of the 

as the Reynolds number of the flow increases, where v is the viscosity, u is the 
velocity and repeated indices in (1) are summed. Kolmogoroff’s (1941) original 
universal similarity hypotheses did not take this variability of E into account. 
He formed a length scale L, = (v3/(c))4 and time scale TI( = (v/(e))* using E 

averaged over volumes of order L, where L is the energy scale of the motion. 
Laudau (see Yaglom 1966) criticized Kolmogoroff’s hypotheses on these grounds 
shortly after their publication, but it was twenty years (Kolmogoroff 1962, 
Obukhoff 1962) before Kolmogoroff himself suggested a refinement and extension 
of his hypotheses to include the random character of the dissipation. Thus, the 
revision of Kolmogoroff ’s first and second universal similarity hypotheses coin- 
cided almost exactly with their apparent experimental confirmation by a number 
of investigators. 
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It was argued that E should not only be random but that its distribution should 
be logarithmically normal. Yaglom (1966) has shown that the assumption of a 
cascade process of energy transfer from very large- to very small-scale turbulent 
motions implies that In(€) should be Gaussian if the transfer stages arc statistic- 
ally similar and independent. 

The only published measurements suitahle for comparison appear to be those 
of Gurvich ( 1  967) who extended the assumption of dissipation lognormality to 
include the dissipation of temperature variance x by thermal conduction, 

= 2 ~ ( g r a d T ) ~ ,  ( 2 )  

where a is the thermal diffusivity (cmz/sec). If both x and E are lognormal, it 
follows that ( 4 T ) 2  and ( 4 ~ ) ~  will also be lognormal, where AT and Au are tem- 
perature arid velocity differences between two points separated by a distance r ,  
L 9 r & lTIR,  since we expect (AT)2 - xre;3r3 and ( A U ) ~  - E!Y; and the product 
of lognormal random variables is lognormal. x, and E,  denote dissipations averaged 
over volumes of size r between the points of mcasuremcnts of AT and Au. 

Gurvich (1967) measured the distribution function of AT for r = 2cm at a 
height of 4 rn above the ground for two records of nearly 10,000 samples. From 
these he used graphical methods to calculake the distribution function of 
log( (AT)2/((AT)2)],  shown in figure 1 plotted on probability co-ordinates such 
that normal distribution functions follow straight lines. Clearly the data is 
well represented by straight lines, which is consistent with the lognormalit,y of 
( A T ) 2 .  Qurvich interprets this result as experimental confirmation of the log- 
normal distribixtion of e, postulated by Kolmogoroff (1962), Obukhoff (1962) 
and Yaglom (1966). However, this interpretation does not seem justified for 
scvcral reasons. His assumption that (AT)2  - xr&f is doubtful because the 
separation distance of 2 em is very close to the viscous scale 10L, marking the 
end of the inertial subrange. Furthermore, the weak dependence of (AT)2  on c, 
will probably be dominated by the strong dependence on xr so the lognormality 
of is a better indication that xr is lognormal than E?. The primary motiva- 
tion of the present study was to  provide a more direct test of the proposed log- 
normality of eT by measurements of the distribution function of ( A u ) ~  a t  very 
high Reynolds numbers for separation distances r much smaller than the energy 
scale of thc turbulcncc L, and also to measure the distribution of the squared 
derivative ( d u / d ~ ) ~  for the samc reason. A more direct test of Curvich’s proposal 
that xr should bc lognormal was accomplished by similar measurements of 
thc squared temperature derivative (dT/dx)2. R. W. Stewart reported similar 
tests of dissipation lognormality a t  the Boeing Turbulence Symposium, but 
the details of his tests are not presently available to the authors for comparison. 
S. Corrsin also described kurtosis measurements for wind tunnel tnrbulence at  
the Symposium. 

The slope of a normal distribution function on a probability plot such as figure 
1 is l / w ,  where rr is the standard deviation of the random variable. Prom the 
properties of the moments of lognormal random variables (Aitchison & Brown 
1957) i t  follows that the kurtosis K of the random variable AT is related to  u 

1 2  

of ln(AT)2 by 
K = exp (@), 



Pine structure of ~ u r ~ u ~ e ~ t  velocity and temperature Jields 155 

where K is defined as ( (AT)4 ) / ( (AT)2 )2 .  Using (3) Gurvich showed that the K 
value corresponding to the slope of line (a )  of figure 1 is 18 compared to 3 if 
AT were Gaussian. But he also found the indicated kurtosis of line (b)  is 1400. 
A random variable with such an extremely large kurtosis is characterized by a 
few large positive or negative spikes occupying a small fraction of the time. 
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FIGURE 1. Probability distribution of the squared temperature difference compared with 
lognormality. P([ < to), [ = ( A T ) 2 / ( ( A T ) 2 ) .  X ,  (a)  12 August 1965, K = 18 from (3); 
0, (b) 17 August 1965, K = 1400 from (3). Separation = 2 cm, lo4 samples per plot 
(Gurvich 1967). 

For comparison, if we call this fraction r and assume the variable is one constant 
for the fraction 7 and another constant for the fraction 1 - 7, the kurtosis is simply 
[ 1 / ~ ( 1 - ~ ) ] - 3  z 1 / ~  for 7 small compared to one. Because 7 is small we see 
that it will be necessary to take very large sample sizes in order to measure a 
large kurtosis value with any statistical significance. For example, Gurvich’s 
indicated K value of 1400 corresponds to T of only 7 x lop4 or about 7 samples of 
extreme AT values from his sample size of 10,000. If the ( A T ) 2  distribution is 
indeed lognormal, then it is clear that a larger sample size will be needed to 
establish the parameter B characterizing the distribution. 

As already indicated, the purpose of the present paper is to describe some 
measurements of high Reynolds number velocity and temperature statistics, 
especially the distribution functions of ( A u ) ~ ,  (dT/dx)2 and (du/dx)2 compared 
to the lognormal distributions predicted for xr and E ~ .  The measurements of 
( A u ) ~  were made over the Pacific Ocean off Mexico in March 1968 by Gibson & 
Williams (1969) from the Scripps Floating Instrumental Platform (FLIP). 
The measurements of dTldx and duldx were made by Gibson & Stegen in May 
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1969 during FLIP'S participation in Project BOMEX (Barbados Oceanographic 
and Meteorological Experiment) in the Atlantic Ocean. 

Another purpose of the BOMEX measurements was to estimate the universal 
inertial subrange constants for velocity and temperature spectra using dissipa- 
tion rates x and t estimated from measured derivatives of T and 16. Previous 
estimates of 31 and I; used in the determination of the subrange constants have 
generally bccii indirect because of the difficulties of derivative measurements, 
and therefore subject to substantial errors. Some preliminary results of this work 
will be disczissed. A full account will be published in the near future. 
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FIGURE 2. Probability distriblttion of the square of the velocity difference. Comparison 
with lognormal distribution. Separation Ax = 1 em, 4 x lo4 samples per plot (Gibson & 
Williams 1969). 5 = loge(Au)2+G, Au = u(x+Az)-u(x). 

Au distribution 
,. 

F \ 

Y (m) Kurtosis Skewness 

0 7 19.6 - 0.52 
a 2 22.1 - 0.71 
0 1 23.4 - 0.89 

2. Velocity difference measurements, Pacific Ocean 
The experimental details of the Au rncasurements are given elsewhere (Gibson 

RS Williams 1969) so they need not be repeated here. The resulting probability 
plots of distribution functions of ln(Au)2 for 1 em separation distance measured 
at three heights above the ocean surface are shown in figure 2, along with cal- 
culated moments of the distributions of velocity difference A%. The agreement 
of the data with straight lines is good a t  the higher values of ( A u ) ~  indicating 
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qualitative support for the lognormal distribution for E,. The curvature of the 
data on the left is due at  least in part to least count errors of the digital samples. 
Instrument and tape recorder noise also cause similar upward curvature dis- 
tortion of the probability plot by shifting very low sample values to higher levels. 

Kurtosis values calculated directly from the Au data were all about 20, but 
were quite different from K values inferred from the slopes of the straight lines 
in figure 2. The data for height 7 m indicates K should be about 15, but for 1 
and 2 m the slope implies kurtosis values of about 37. These large K values are in 
conflict not only with the values measured directly, but also with Kolmogoroff’s 
prediction that intermittency should increase with Reynolds number. Because 
of the sensitivity of the probability plot to the effects of noise, K values inferred 
from plot slopes using (3) assuming ( A u ) ~  is lognormal are inaccurate compared to 
values calculated from Au samples. 

Another quantity calculated from the Au samples is the skewness S ,  defined as 
the mean cube divided by the # power of the mean square ( ( A U ) ~ ) / ( ( A U ) ~ ) % ,  
According to local isotropy theory (taking Au for 1 cm as a measure of the deriva- 
tive) this quantity should be constant and proportion to mean principal rate of 
strain product (a&), where eij = (aui/axj + auj/axi)/2 is the rate of strain tensor 
with principal values a 2 p 2 y. Since by continuity a+-/+ y = 0, y must be 
negative and a positive, so the sign of S determines the sign of p. Since all S 
values are negative, it appears that fluid elements usually have two positive 
principal strain rates; that is, they tend to be flattened out into sheets. The 
measured values around -0.7 are consistent in sign but larger in magnitude 
than a limit of - 0-3 inferred by Batchelor (1953) from measurements of Towns- 
end & Stewart (1951) and universal equilibrium theory. Gurvich (1960) has also 
measured S for separation distances of 25 and 50 cm. His values were smaller 
in magnitude but also negative, ranging from - 0.19 to - 0.62. 

3. Derivative measurements, Atlantic Ocean 
3.1. Experimental arrangements 

Measurements of velocity and temperature fluctuations were made at heights 
between 2 and 1 2 m  above the mean ocean surface. The temperature and 
velocity sensors were mounted on an automatic positioning device developed 
by R. Fleagle at  the University of Washington. This device cycled the probe 
support between stations nominally at 12, 8, 4 and 2 m  above the surface, 
stopping for 45 sec measurement periods at  each station. The probe support 
moved along a track on a vertical boom mounted 50 ft. to the side of FLIP, in 
order to minimize the distortion of the wind profile by the ship. The streamwise 
velocity fluctuations were measured using a linearized constant resistance 
anemometer (Thermo-Systems Model 1054A). The sensor was a 3.8 ,u diameter 
wire 1-25 mm long. The bridge was operated with a wire overheat of 1.45 and 
the linearizer zeroed with the wire shielded (operating temperature x 130°C). 
At this operating temperature, the low level temperature fluctuations in the 
flow had a negligible influence on the velocity measurements. The use of very 
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long cables to the sensor ( w 40 m), posed a problem with regard to stable opera- 
tion of the anemometer bridge circuit. However, carcful adjustment of the bridge 
parameters resulted in stable operation with a frequency response in excess of 
5 KHz. A continuous velocity calibration signal was provided by a sensitive 
3-cup anemometer (Beckman-Whitley-calibrated by the Bureau of Standards) 
mounted 30 em below the hot-wire probe. The voltage signals from the hot-wire 
and cup anemometers were simultaneously recorded on an FM tape recorder. 
Eater, the digitally sampled data were averaged over 10 see intervals. By plotting 
a number of such averages, the calibration curve was generated. The curve was 
linear with less than i. 2 % scatter over a 2 : 1 range in velocity, and the extra- 
polated straight line passed through zero. 

Temperature fluctuations were detected using cold-wire thermometer tech- 
niques. The sensor was an extremely fine (and fragile !) platinum wire, 0-6 ,u 
diameter and 2 mm long mounted 5 cm above the anemometer sensor. Tempera- 
ture fluctuations in the wire were detected using an a x .  bridge with a phase- 
sensitive demodulator. The frequency response of the temperature sensing 
system was limited by the thermal response time of the sensor to about 2 KHz. 
The a.c. bridge was arranged to give a maximum sensor current of about 1 mA, 
a value sufficiently low to ensure negligible velocity sensitivity. 

Very little change was observed in the temperature signal during movement 
between vertical stations despite significant vibrations in the support device, 
indicating negligible sensitivity to velocity and strain gauge effects during 
steady operation. The temperature system was calibrated by introducing step 
changes in resistance with a precision decade resistance box placed in the known 
arm of the 1 : 1 a.c. bridge. 

Before recording, the velocity and temperature signals were preconditioned 
with various analogue circuits. The anemometer signal was first band-pass 
filtered between 2 Hz and 2 KHz with active filters (attenuation = 24 db/octave). 
The signal was then amplified to a value compatible with the tape recorder 
(i 1.4 V) and finally recorded. The amplified signal was also electronically 
differentiated and recorded. The differentiator had a time constant of 0.5 msec, 
with a measured phase shift error of 15' a t  500 Hz. 

The output of the a.c. bridge was recorded directly. To obtain a differentiated 
temperature signal, the a.c. bridge signal was first low-pass filtered a t  2 KHz 
with an active filter (attenuation = 24 dbloctave). The differentiator had a time 
constant of 0.5 msec, with a measured phase shift error of 3" a t  500 Hz. The differ- 
entiated temperature signal had to be slightly attenuated for compatibility 
with the tape recorder. 

A 7-channel F M  tape recorder (Ampex SP-300) was used to record the various 
signals. At the recording speed of 7Q in./sec, the frequency response extended to 
2.5 KHz, with a signal-to-noise ratio of 35 db. One channel of the recorder was 
used to record a probe position signal. This signal was shorted when the probe 
was stopped, so that it could be used for flutter compensation if needed. The 
tape recorder was calibrated by recording a precision triangle function and a 
short on each channel before and after each period of data recording. 

The analogue tapes were played back and converted to digital form in the 
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laboratory. At each height the data was broken up into 50 records containing 
2048 12-bit samples per record. This gives the spectra a t  each height 100 statis- 
tical degrees of freedom. The sampling rate was 2085 Hz, so each record represents 
almost one second of data. Ten records were obtained in sequence during each of 
five different 45 see sampling periods at  the particular height in order to make 
up the files of 50 records. Each cycle through the four heights took about 3 min, 
so the data is a representative sample of about 20 min of data collection. Before 
digital sampling, an analogue low-pass filter set a t  1 KHz (about one-half the 
sampling rate) was used to prevent aliasing of the specks. 

Reviewing the reduced data, the maximum frequency distinguishable from 
the noise was about 1 KHz. Examining the electronics, we see that the system 
frequency response was limited by the low-pass filter used to prevent aliasing 
of the spectra. At the corner frequency (1 KHz) the dissipation spectra has fallen 
by three decades. Under similar circumstances, Stegen (1969) has shown that 
the phase errors introduced by limited system response have negligible influence 
on the higher order statistics. However, it was necessary to correct the spectra 
above 500 Hz for the filter response. These corrections made less than 10% 
change in the measured universal constants. 

3.2. Results 

A summary of the conditions of measurement as well as the various calculated 
statistical quantities for the temperature and velocity fluctuations measured 
in the Atlantic Ocean during BOMEX is given in table 1. The turbulent boun- 
dary layer was nearly neutral, with sea-surface temperature (bucket) only 
0.3"C warmer than the air a t  8 m. Measurements were made in the afternoon 
following a long period of steady light wind from the east characteristic of 
Caribbean trade winds in early May. 

Y 

Height 
(u) Re (r'r> S ( 2 )  K r Z )  (r'r) ( OCz/m2) S(:) K ( E )  (m) (mlsec) x log ( s e r a )  

12.25 5.20 4.1 4.2 -0.85 26 0.216 -0.40 43 
8.25 4.96 2.7 12.1 -0-81 20 0.547 -0.72 38 
4.25 4.76 1.3 19.3 -0.44 13 0.839 -0.48 37 
2.25 4.63 0.7 29.0 -00-72 15 1.817 -0.72 25 

Time: 3.00 pm., 6 May 1969. 
Position: 14'30' N, 58" 30' TV. Atlantic. 
Re = Reynolds number ( u ) y / v ,  v = kinematic viscosity of air. 

= 28.OoC, qes = 28.3"C, K = kurtosis, S = skewness. 

TABLE 1. Summary of conditions and results 

Figure 3 shows the dissipation spectrum of the streamwise velocity k?@(kl )  
measured from the derivative a t  a mean height of 2.25 m above the water, 
where (D(k,) is the one-dimensional spectrum such that 
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FIGURE 3. Vclocity derivative spectrum normalized with Kolmogoroff scales. lo5 samples. 
Height = 228 cm, (u) = 463 cm/sec, ( 6 )  = 68 cm2/sec3. 
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FIGURE 4. Temperature derivative spectrum normalized with Kolmogoroff scales. lo" 
samples. Height = 225 cm, (u )  = 463 cm/sec, (6) = 68 c ~ n ~ / s e c ~ ,  (x) = 2.40 x lo4 'C2/sec. 
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and u‘ is the fluctuating component of velocity in the streamwise x, direction. 
The spectrum and wave-number k, have been normalized with Kolmogoroff 
length and time scales LK and T,, defined above. The mean dissipation (e) 
was estimated from the derivative of the velocity du,ldx, assuming local isotropy 
using the relation 

where Taylor’s hypothesis was used to convert measured time derivatives to 
space derivatives in the usual way. An unusually large value of the Kolmogoroff 
inertial subrange constant a, = 0.69 is indicated by the data of figure 3, where 
a, is defined by CD = a,(e)Qk,3-. 

Figure 4 shows the dissipation spectrum of the temperature field k;CDT(kl), 
normalized with (e), v and (x>, where (2) was estimated from 

(x) = 6D((dT)2) A 6D&z(($)2), 
ax, 

assuming local isotropy of the temperature field and again using Taylor’s 
hypothesis to convert time to space. In  this case the inertial subrange constant 
p,, defined by 

is found to be 1.17, where T‘ is the fluctuating component of the temperature T.  
This value is much larger than pl values previously reported. For example, 
Gibson & Schwarz (1963) found /I1 values of only 0.33 to 0.44, and Grant et al. 
(1968) report p1 = 0.31 f 0-06.t 

Two factors which might account for part of this dramatic increase in /I1 
are described below: first, anisotropy of the temperature fine structure may 
result in mean shift of horizontal temperature gradients toward the vertical due 
to the mean strain of the shear layer; and secondly, the very large intermittency 
of the velocity dissipation may reduce the effective least principal strain rate 
which dominates the generation of the fine structure of scalar fields. 

3.2.1. Effect of anisotropy on temperature spectrum. If the temperature field 
were locally isotropic, statistical descriptions of the temperature derivative 
such as the skewness 

would be invariant to rotations and reflexions of the co-ordinate axes. Therefore, 
reflecting co-ordinate x to X I  = -x gives S = - S‘; hence, S must be identically 
zero. But the present measurements of S(dT/dx) show (table 1) that it is 
consistently positive with some tendency to increase close to the surface, even 
though the kurtosis shows a corresponding decrease. Thus we see that the 
fine structure of the temperature field cannot be locally isotropic. It also seems 

-f Yaglom reports (private communication) precise agreement of these values with 
corrected values of PI obtained by Tevang, Gurvich, Zubkovskii & Meleshkin. 

I1 F L M  41 
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that the tendency toward local isotropy with increasing Reynolds number 
(u>y/v is rather weak, since the skewness shows little or no decrease going from 
height 2.25 to 12.25 m despite a factor of six increase in Reynolds number. 

If the temperature derivative is anisotropic there may be an effect on the in- 
ertial subrange constant PI measured assuming local isotropy. If the field is 
stretched so that the local gradient vectors are more vertical on the average, 
then the horizontal wave-number marking the diffusive cut-off k,, will be reduced 
to some lower value k;, < klc. But from (5) 

assuming local isotropy of the T field. In  normalized form 

Now if (for the sake of argument) we assume CD,, = /?,kc2 for klK < k,, and 
= 0 for k,, > klc, we find 

p1 = 3 (v/D)k,4. 

Therefore, since k;, for the assumed anisotropy is less than k,, for the isotropic 
case, we can conclude that 

P; ’ P1 

for enhanced vertical gradients. The mean strain of the boundary layer is such 
that we might expect fluid elements to be stretched into horizontal sheets, there- 
fore tending to enhance the vertical and decrease the horizontal streamwise 
temperature gradients. 

3.2.2. Effect of E intermittency on temperature spectrum. Batchelor (1959) 
has shown that the finest structure of weakly diffusive scalar fields mixed by 
turbulence is determined by the local rate of strain. The smallest scale fluctua- 
tion, corresponding t o  the length scale of the diffusive cut-off of the scalar spec- 
trum, is given by the ‘Batchelor length scale’ L, = (D/y)$ ,  where the strain 
parameter y is normally taken to be (e/v)&. Batchelor’s analysis was extended by 
Gibson (1968a), who concludes that the finest structure of all scalar fields should 
be determined by the local strain rate, independent of the ‘Prandtl’ number 
v/D. 

Gibson (1968b) also suggested that the diffusive cut-off length scale would 
increase if the turbulence is strongly intermittent (following a comment of 
B. Hughes) because the local strain magnitude follows the mean root dissipation 
rather than the root mean. Thus, if we assume the diffusive cut-off is (D/yeff)*, 
where 

and the ‘intermittency factor ’ I is defined as the root mean to mean root dissipa- 
tion ratio, then (D/yeff)& = LBJI ,  Since I >  1 by Schwartz’s inequality we 
conclude the effect of intermittency will always be to  increase the length scale 
marking the diffusive cut-off. 
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The coefficient p1 will also be affected by I. Following the previous sharp 
cut-off spectrum model used in the discussion of the effect of anisotropy, we 
find = p,I%. The quantity I has not yet been measured. Approximating I 
by 2/(iK) to obtain a crude measure of the intermittency effect on p1 gives 

= pl(QK)%, so we expect /I1 to increase with increasing intermittency. 
Since K ranged from 13 to 26 for the present measurements, the factor +Ki 
ranges from 1.7 to 2.1. This factor is not large enough to account for the observed 
increase in p1 by a factor of about 3 above the low Reynolds number measure- 
ments, but it is in the right direction, and may have been underestimated by 
the approximations. However, it  is in conflict with the Grant P t  al. (1968) ocean 
measurements which were also a t  high Reynolds numbers and presumably 
comparably high levels of intermittency, yet gave results considerably lower 
than obtained here. It is clear that further measurements of both a t  low 
and high Reynolds numbers are needed to resolve these large apparently experi- 
mental inconsistencies. 

3.2.3. Distribution functions of derivatives. Both velocity and temperature 
derivatives are quite spikey when observed on an oscilloscope, especially the 
temperature. This non-Gaussian behaviour is clearly illustrated by the prob- 
ability plot of the distribution functions of temperature and velocity derivatives 
normalized by standard deviations shown in figure 5. No portion of the two 
S-shaped curves approaches a straight line characteristic of a normal distribution 
function. Negative velocity derivative distribution was plotted so both skew- 
ness values have the same sign for the two distributions. 

Figure 6 shows probability plots of the distribution functions for the logarithm 
of the squared velocity derivatives measured at  the four heights from 2 to 12 m 
up. The derivative square is normalized by the derivative variance. Also shown 
with each distribution function is a straight line with slope corresponding to 
the calculated kurtosis of the derivative using (3).  Values of K ranged from 13 
to 26. Agreement of the data points with the calculated straight lines is very good, 
at  least for the upper four or five powers of e ,  which is all that can be expected 
given the signal to noise ratio of the tape recorder of only about 35 db corres- 
ponding to A(,, = 4 in figure 6. 

Curvature of the data points above the straight lines (corresponding to log- 
normality) is certainly due to noise a t  the lowest probability values, and may 
possibly account for all departure from lognormality observed. The estimates 
of the probability for high derivative magnitudes are not affected by noise and 
are consistent with lognormality. Estimates of probability for low derivative 
magnitudes are dominated by noise, and it is not possible to say that a departure 
from lognormality was observed based on the measurements of figure 6 and the 
known system noise levels. Indeed, to extend the measured probability functions 
to 20 yo would require an overall system signal to noise ratio of better than 7 0  db. 
Note that the effect of noise on the distribution function is to reduce the slope, 
which implies a larger kurtosis for duldx than was actually measured. 

Figure 6 also shows calculated values of skewness S. As determined pre- 
viously for Au ( 1  cm) in figure 2 the skewness values were large and negative, 
ranging from - 0.4 to - 0.9. 

11-2 



164 C .  H .  Gibson, G. R. Xtegen and R. B. Williams 

99.9 1 I I I I I I I I 

95 

90 

80 
70 
60 
50 

.sn“ 40 
v 30 

20 

10 

5 

2 
1 

w7 

0 0  
0 

e 
0 

0 
0 
0 
0 
0 

0 

0.01 L I I I I I 1 I I 
-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 

go 
FIGURE 5 .  Probability distribution of temperature and velocity derivatives compared 
with Gaussian. Height = 225 cm, 105 samples per plot. 0, 6 = (dT/dz)/((dT/~,~)2)f; 
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FIGURE 6. Probability distributions of squared velocity derivative compared 
lognormality. 105 samples per plot. [ = In[(du/d~)z/((du/r:)2)1. 
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Figure 7 shows a similar comparison of the temperature derivative squared 
with lognormality as suggested by Gurvich. Agreement with the straight lines 
calculated from the measured kurtosis does not extend to as low a probability 
as for the velocity derivatives in figure 6, due to the lower signallnoise ratio for 
the temperature derivative. Kurtosis values are larger for temperature than for 
velocity, ranging from 26 to 43, but are not nearly as large as the value of 1400 
inferred by Gurvich from his measured probability plot in figure 1.  Straight 
lines fitted to the lower portions of the probability plots of figure 7 also indicate 
very large K values, as high as 8000 for position (4)) but the slopes are almost 
certainly due to noise. 

FIGURE 7 .  Probability distributions of squared temperature derivative compared with 
lognormality. lo5 samples per plot. 6 = l n [ ( d T / d ~ ) 2 / ( ( d T / d ~ ) ) ] .  

4. Summary and discussion 
Derivatives of high Reynolds number velocity and temperature fluctuations 

were measured in the atmospheric boundary layer over the open ocean. Prob- 
ability distribution functions were calculated and found to be highly non- 
Gaussian. Non-zero values of temperature gradient skewness were found, 
indicating some local anisotropy for the temperature field. Kurtosis values 
were also very large, increasing from 15 to 27 with height from 2 to 12 m for the 
streamwise velocity derivative, and increasing from 26 to 43 for the temperature 
derivative. 

Probability distribution fHnctions were calculated for the squared derivatives 
and compared with the prediction of Kolmogoroff, Obukhoff and Yaglom that 
the viscous and diffusive dissipation rates should be lognormal. Portions of the 
measured distribution functions not affected by noise were found to be in good 
agreement with lognormality. Kurtosis values of the derivaties calculated from 
the squared derivative distributions assuming lognormality were also in good 
agreement with the kurtosis values actually measured. 
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One-dimensional spectrum functions were calculated from velocity and tem- 
perature signals, and these were normalized by Kolmogoroff length, time and 
scalar scales calculated from molecular diffusivities of momentum and heat, 
as well as viscous and diffusive dissipation rates calculated from the derivatives 
assuming local isotropy. 

Universal inertial subrange constants calculated from the derivative spectra 
at the point closest to the ocean surface were found to be much larger than 
most values previously reported in the literature. The one-dimensional velocity 
constant a, was found to be 0.69 at  a mean height of 2.25 m above the surface, 
compared to usual values of only about 0.5. The one-dimensional scalar constant 
p, was found to be 1.17, which is 3 to 4 times larger than values previously 
reported.? It was shown that such large values can a t  least partially be ex- 
plained by assuming local gradients are anisotropic in the same direction as 
the mean gradients. However, preliminary measurements of PI from this study 
at the upper levels (to be published) a t  larger Reynolds numbers and less shear 
only show a decrease to about 1.0. It was also shown that intermittency effects 
might increase PI considerably. Gibson (1968 b )  has shown that Batchelor’s cut- 
off function implies that P, values should be about 0.9 neglecting intermittency 
effects and assuming the tendency of turbulent fluid particles is t o  be stretched 
into sheets. Whether any or all of these effects are active remains to be seen. 

The large measured values of a, are more dif6cult to understand. Part of the 
increase may be due to local anisotropy effects as suggested for the scalar spec- 
trum, but Pond et al. (1966) report a, = 0.48 k 0.055 from measurements made 
under similar conditions of shear and presumably with similar anisotropy effects. 
A t  larger heights in the profile, preliminary values of a1 only seem to decrease 
to about 0.6. The only published rcsults indicating such large values of a1 are 
those of Kistler & Vrebalovich (1966) whose spectra indicate a, values of 
0.65 in very high Reynolds number grid turbulence. Unfortunately the Co-op 
Ti;liind Tunnel was dismantled before the results could be confirmed. Most 
recently, the results of Sheih (1969) measured in the atmosphere at  high Reynolds 
number indicate a value of a1 = 0.59. 

Kraichnan (1968) derived a,  = 0-68 using the abridged Lagrangian History 
Direct Interaction approximation. Pao ( 1965) also obtained a relatively large 
value of a, = 0.55 by fitting his spectral cut-off function to measured viscous 
cut-off shapes with a, as the adjustable parameter. Clearly further careful 
measurements of this important quantity are needed in order t o  establish 
whether it is indeed a universal constant of high Reynolds number turbulence. 
If it is not an absolute constant, then it should be established how and why it 
varies. 

The authors’ spectral analysis, calibrations and calculations of al, PI, e and x 
were repeated completely by Carl Friche using the data tapes and an IBM 1130 
computer, and the refined results are reported here. Filter corrections resulted 
in substantial changes in e and x values, although compensating errors resulted 

have also recently been observed by Noel Boston over a 
mud flat (private communications from N. Boston and R. W. Stewart). 

t Similarly large values of 
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in virtually no change in 
figure 3 corresponds to a 
Williams 1969), which is 

values of a, and p,. Note that the value of 8 given in 
10 metre drag coefficient C,, = 1.6 x (Gibson & 
close to the expected value. 
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